Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theory Biosci ; 138(2): 215-221, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30734908

RESUMEN

Clonal plants grow horizontally by producing multiple physiological individuals (ramets). We studied clonal growth in a homogeneous environment using a dynamic spatial model based on a stochastic cellular automaton. We investigated different growth forms from the aspect of ramet mortality. Non-steady-state and quasi-steady-state cases were defined, and we determined the number of steps suitable for making a reliable difference between these two types of cases. This given number of steps was used when testing for the proportion of quasi-steady-state cases in 1000 repetitions. We also tested the efficiency of occupation in these cases. Our expectation was that higher occupation would be associated with lower ramet mortality. The results only partially verified this hypothesis. Though with increasing ramet mortality, the average number of ramets tended to decrease, it was not the lowest ramet mortality that resulted in the highest occupation. Our results showed that very low ramet mortality was unfavourable for the plant, as the spreading front and the area behind this front were so packed that the plant was not able to return and recolonize the vacated sites in the central area. This resulted in a lower proportion of quasi-steady-state cases and lower occupation in these cases. Our results may contribute to a deeper understanding of clonal plant growth and its limiting factors.


Asunto(s)
Caryophyllales/crecimiento & desarrollo , Caryophyllales/fisiología , Células Clonales , Desarrollo de la Planta , Algoritmos , Biomasa , Simulación por Computador , Ecosistema , Modelos Teóricos , Rizoma/crecimiento & desarrollo , Procesos Estocásticos
2.
J Theor Biol ; 412: 146-153, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-27826119

RESUMEN

The "ant in the labyrinth" problem describes spatial constraints upon a moving agent in a disordered medium. In contrast with an animal-like agent (an "ant"), a clonal plant can stay in a place and move at the same time: some parts develop roots, while others continue moving by horizontal growth and branching. Hereby we present a spatially explicit, dynamic model for the study of percolation by plant growth rules in lattices that consist of open and closed sites. Growth always starts from a single seed in an open percolation cluster (patch). By increasing the proportion of open sites (p), we describe a new kind of threshold (the "tracking threshold", approximately pt=0.73), which is higher than the site percolation threshold (pc=0.5 in this lattice). At pc

Asunto(s)
Modelos Biológicos , Desarrollo de la Planta/fisiología , Plantas
3.
J Chem Inf Model ; 55(5): 941-55, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25865959

RESUMEN

Maximum common substructure search is a computationally hard optimization problem with diverse applications in the field of cheminformatics, including similarity search, lead optimization, molecule alignment, and clustering. Most of these applications have strict constraints on running time, so heuristic methods are often preferred. However, the development of an algorithm that is both fast enough and accurate enough for most practical purposes is still a challenge. Moreover, in some applications, the quality of a common substructure depends not only on its size but also on various topological features of the one-to-one atom correspondence it defines. Two state-of-the-art heuristic algorithms for finding maximum common substructures have been implemented at ChemAxon Ltd., and effective heuristics have been developed to improve both their efficiency and the relevance of the atom mappings they provide. The implementations have been thoroughly evaluated and compared with existing solutions (KCOMBU and Indigo). The heuristics have been found to greatly improve the performance and applicability of the algorithms. The purpose of this paper is to introduce the applied methods and present the experimental results.


Asunto(s)
Heurística Computacional , Descubrimiento de Drogas/métodos , Factores de Tiempo
4.
Philos Trans A Math Phys Eng Sci ; 372(2030)2014 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-25368345

RESUMEN

Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...